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Abstract – A Fourier analysis is conducted in two-dimensional (2-D) geometry for the discrete ordinates
(SN ) approximation of the neutron transport problem solved with Richardson iteration (source iteration)
using the cellwise block-Jacobi (bJ) and block–Gauss-Seidel (bGS) algorithms. The results of the Fourier
analysis show that convergence of bJ can degrade, leading to a spectral radius r equal to 1, in problems
containing optically thin cells. For problems containing cells that are optically thick, instead, r tends to 0.
Hence, in the optically-thick-cell regime, bJ is rapidly convergent even for scattering-dominated prob-
lems. Similar conclusions hold for bGS, except bGS approaches the asymptotic, thick-cell regime at
convergence rates higher than bJ. Hence, we have implemented the bGS algorithm on the Roadrunner
hybrid, parallel computer architecture. A compute node of this massively parallel machine comprises
AMD Opteron cores that are linked to a Cell Broadband Engine (Cell/B.E.). L APACK routines have been
ported to the Cell/B.E. in order to make use of its parallel synergistic processing elements (SPEs). The
bGS algorithm is based on the LU factorization and solution of a linear system that couples the fluxes for
all SN angles and energy groups on a mesh cell. For every cell of a mesh that has been parallel decom-
posed on the higher-level Opteron processors, a linear system is transferred to the Cell/B.E. and the
parallel L APACK routines are used to compute a solution, which is then transferred back to the Opteron,
where the rest of the SN transport computations take place. Compared to standard parallel machines, a
one-hundred-fold speedup of the bGS was observed on Roadrunner. Numerical experiments with strong
and weak parallel scaling demonstrate that the bGS method is viable and compares favorably to full
parallel transport sweeps (FPS) on 2-D unstructured meshes when it is applied to optically thick, multi-
material problems. Specifically, the strong parallel efficiency of accelerated bGS on Roadrunner can
achieve 73% at 512 processors, compared with 32 processors, while efficiency is 34% for the (Opteron-
only) implementation of FPS. The weak parallel efficiency of bGS is 58% while it reaches 10% for FPS. As
expected, however, bGS is not as efficient as FPS in optically thin problems.

I. INTRODUCTION

Computational methods for particle transport are very
demanding, consuming the bulk of computational re-
sources in a range of multiphysics simulations, includ-

ing astrophysics calculations and nuclear reactor design.
Current transport methods have evolved incrementally
in response to advances in hardware technology. This
picture, though, may soon change dramatically. It is un-
derstood by the scientific computing community that
parallel, advanced hybrid computing architectures
may become the machines of choice for large-scale*E-mail: maxrosa@lanl.gov
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computing in the future. The new machines have differ-
ent processors and communication layers at different lev-
els in their architecture, with different processing
characteristics and capabilities at each level. Hybrid com-
puting platforms, like the Roadrunner1 class of hybrid
parallel computers, several of which have been assem-
bled at Los Alamos National Laboratory2 ~LANL!, re-
quire the development of new transport methods, or
reconsideration of previously discarded methods, in or-
der to make full use of their capabilities.

In this paper we conduct a study of the stability and
convergence properties of the cellwise block-Jacobi ~bJ!
and block–Gauss-Seidel ~bGS! algorithms. Fourier analy-
sis is traditionally used to study transport iteration
schemes in a homogeneous infinite medium. In fact, it is
a valuable tool to understand the behavior of the itera-
tion error modes of various iterative schemes. Therefore,
we conduct a Fourier analysis for the SN approximation
of the steady-state one-group transport problem solved
with Richardson iteration using cellwise bJ and bGS.
The spatial discretization is a discontinuous finite ele-
ment method3 ~DFEM!, specialized to triangular cells,
and the scattering is assumed to be isotropic. The analy-
sis is verified with results from a two-dimensional ~2-D!
transport code that implements cellwise bJ and bGS on
parallel computing platforms.

One can view the cellwise bJ and bGS schemes as
an evolution of the inexact parallel bJ ~IPBJ! algorithm,4

in which the IPBJ operator-split approach is applied to
each mesh cell on a parallel subdomain. A review of the
analogies and differences between bJ and IPBJ can be
found in Table I of Ref. 5. Similar to IPBJ, the degrada-
tion in the spectral properties of bJ and bGS in the
optically-thin-cell limit is a consequence of the “lag-
ging” of the incoming angular fluxes at a mesh cell’s
boundaries, as the cells are made thinner and become
more “strictly coupled.”6 In the opposite limit of opti-
cally thick cells, bJ and bGS display superior spectral
properties with respect to IPBJ. In fact, while IPBJ’s
spectral radius approaches the scattering ratio c of the
medium considered in the Fourier analysis, both bJ and
bGS are characterized by a vanishing spectral radius in-
dependent of c, even for scattering-dominated problems.
As we will show in this paper, the latter behavior is a
consequence of the different splitting philosophy behind
bJ and bGS, in which the contribution from the scatter-
ing source on a mesh cell is not lagged, as opposed to the
“inexact” splitting characteristic of IPBJ where the scat-
tering contribution is also lagged.

It is well known that for transport problems contain-
ing “diffusive” spatial regions that are optically thick
and scattering dominated the traditional source iteration
~SI! algorithm converges slowly.7 Since many important
applied problems do contain diffusive regions, it has long
been desired to accelerate the iterative convergence of
SI. The cellwise bJ and bGS algorithms can overcome
such limitations at the higher computational cost result-

ing from their numerical implementation. While such
elevated computational cost made bJ and bGS unappeal-
ing for implementation on traditional parallel computing
architectures, the arithmetic-intensive bJ and bGS ap-
pear suitable algorithms for SN transport computations
on the parallel, advanced hybrid computing architec-
tures that are gradually becoming available to the com-
putational transport community.

In view of its superior spectral properties, we have
implemented the multigroup bGS iteration on the Road-
runner machines at LANL ~Ref. 8! with the expectation
that the combination of fast factorization algorithms avail-
able on the Cell Broadband Engine™ ~Cell0B.E.!a and
rapid convergence rate associated with the cellwise bGS
algorithm will make the bGS iteration competitive with
the full parallel transport sweeps ~FPS! that is typically
used in parallel SN transport applications.9,10 Specifi-
cally, we investigate the range of problems for which the
cellwise bGS algorithm is more efficient than FPS on
unstructured meshes.

The emphasis on the bGS iteration, as opposed to
traditional FPS, sets this work apart from other deter-
ministic transport efforts within the emerging and rap-
idly developing interdisciplinary area of computational
codesign, focused on the simultaneous consideration
and design of algorithms, or mathematical methods, and
computing technology. Other recent efforts have been
dedicated to speeding up the execution time of the Koch-
Baker-Alcouffe parallel SN sweep algorithm for three-
dimensional Cartesian meshes11,12 either on Roadrunner13

or on hybrid architectures where the accelerators are
general-purpose graphics processing units14 ~GPGPUs!.
Finally, the use of GPGPUs to speed up SN sweeps on
unstructured grids is investigated in Ref. 15.

The main contributions of this paper are the study of
the spectral properties of bJ and bGS and the numerical
implementation of bGS on Roadrunner. Specifically, the
Fourier analysis of the cellwise algorithms is a novel
contribution and was conducted in order to ascertain their
stability and to predict theoretically the convergence
behavior, as a function of the optical thickness of the
computational cells, observed from their numerical im-
plementation. The spectral study described in the first
half of the paper was also instrumental in identifying the
class of optically thick problems that are used, in the
second half, to showcase the superior strong and weak
scaling properties of bGS compared to FPS on unstruc-
tured meshes. Finally, to the authors’ knowledge, the im-
plementation on the Cell0B.E. architecture is an original
contribution toward adapting the multigroup bGS itera-
tion on advanced hybrid computing architectures.

The remainder of the paper is organized as follows.
The Fourier analysis of one-group cellwise bJ is

a Cell Broadband Engine™ and Cell0B.E. are trademarks
of Sony Computer Entertainment, Inc.
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performed in Sec. II, while the spectral properties of
one-group cellwise bGS are investigated in Sec. III. In
Sec. IV we discuss how bGS is applied to the multigroup
SN equations. Single- and dual-threaded strategies for
the numerical implementation of multigroup bGS on
Roadrunner are illustrated in Sec. V. Strong and weak
scaling results are discussed in Sec. VI. Finally, in
Sec. VII we present a summary of our main findings
and conclusions.

II. FOURIER ANALYSIS OF ONE-GROUP
CELLWISE bJ

The cellwise bJ algorithm for the steady-state, one-
group, nonmultiplying transport equation with isotropic
scattering is based on an operator splitting of

~L � SD!c � q , ~1!

where

L � streaming-plus-total interaction operator

S � scattering operator

D � discrete-to-moment operator ~which represents
integration over all SN angles!

c � angular flux

q � fixed source.

The cellwise bJ splitting of the L operator is L � Lc �
Lb , where Lc acts on the angular fluxes within a mesh
cell and Lb acts on all the angular fluxes whose direc-
tions are oriented such that they are incoming relative to
the faces of neighboring mesh cells. Within this split-
ting, Eq. ~1! is written in the form

@I � ~Lc � SD!�1Lb #c � ~Lc � SD!�1q , ~2!

where I is the identity operator. This corresponds to a
linear system for all SN angles and all spatial degrees of
freedom ~we use a DFEM on triangles!. Equation ~2! is
solved iteratively with restarted generalized minimum
residual16 ~GMRES! such that, for each iteration, the
action of the ~Lc � SD!�1 operator is computed using a
LU decomposition for any mesh cell on a parallel sub-
domain. Specifically, all angular fluxes for all the spatial
degrees of freedom on a given mesh cell are computed
simultaneously, one mesh cell at a time. The ordering in
which this “bJ sweep” takes place depends only on the
numbering of the mesh. In the cellwise bJ algorithm, the
term involving Lb is constructed for a given mesh cell
using angular fluxes that are lagged from the previous
iteration:

c~��1! � ~Lc � SD!�1~�Lb c~�! � q! , ~3!

where ~�! � 0 is the iteration index. Hence, not only are
the angular fluxes lagged at the interface between two
adjacent parallel subdomains, as for IPBJ ~Ref. 4!, but
they are also lagged at the boundaries that the mesh cells
share in the interior of a subdomain. The convergence
rate of bJ is the spectral radius of the operator:

TbJ � �~Lc � SD!�1Lb . ~4!

To perform Fourier analysis of cellwise bJ, the equations
representing the fixed-source-free 2-D DFEM spatial dis-
cretization of the SN approximation to Eq. ~3! are written
for the system of four triangular cells over a Cartesian
element sketched in Fig. 1. The equations for the projec-
tions of the discrete ordinates angular fluxes onto the
linear basis functions of the finite element method, in the
four neighboring cells, are grouped together for the dis-
crete ordinates in the four quadrants, respectively. An
infinite homogeneous medium, in which the four-cell
system is periodically repeated, is considered in the Fou-
rier analysis. Therefore, a suitable ansatz must be intro-
duced at the boundaries of the Cartesian element. To fix
ideas, the following Fourier ansatz is formulated for the
discrete ordinates with cosines mm � 0 and hm � 0.
Analogous expressions are introduced for the discrete
ordinates in the remaining quadrants.

Fourier ansatz: ~mm � 0, hm � 0!

c1, m
i ~1! � c3, m

k~�!exp~�jly sdy! ,

i � 1, 2; k � 2,1 ~5!

and

c2, m
i ~1! � c4, m

k~�!exp~�jlx sdx! ,

i � 1, 2; k � 2,1 , ~6!

where

j � M�1 � imaginary unit

s � macroscopic total cross section

dx ~dy! � width of the Cartesian element in the x
~ y! direction

lx ~ly ! � wave number of the Fourier modes in the
x ~ y! direction.

The Fourier ansatz accounts for the lagging of the incom-
ing angular fluxes on face ~1! of both cells 1 and 2 from
the previous iteration. Similar lagged boundary condi-
tions are written for the angular fluxes that are incoming
on faces that the triangles share in the interior of the
Cartesian element.

Substitution of the boundary conditions and of the
Fourier ansatz into the original DFEM equations pro-
duces, after considerable algebra, the iteration matrix

SN TRANSPORT ON HYBRID PARALLEL ARCHITECTURES 211
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TbJ for the cellwise bJ algorithm. Given a certain quad-
rature order, and values for s and the scattering ratio c,
the spectral radius r of TbJ is finally obtained as a func-
tion of dx and dy as follows:

r~dx, dy! � max
lx , ly

6Eig~TbJ~dx, dy, lx , ly !!6 . ~7!

Figure 2 is a plot of the spectral radius as a function of
Cartesian element widths obtained for a level-symmetric
S4 quadrature with equal weights, assuming s � 1 and
c � 0.5. The results in Fig. 2 point to the fact that con-
vergence of cellwise bJ can degrade for problems con-
taining optically thin cells, even for values of the scattering
ratio c less than 1. In fact, the spectral radius tends to 1
independent of the value of c, as the Cartesian element
widths are decreased. This is similar to the behavior of
the IPBJ algorithm that is analyzed in Ref. 4. Precondi-
tioning of IPBJ with transport synthetic acceleration
proved to be effective in improving the spectral proper-
ties of IPBJ, especially for optically thin problems, and
was suggested as a possible remedy for cellwise bJ
~Ref. 5!. As the computational cells become optically
thicker, memory of the information exchanged at the
boundaries is lost, and the spectral properties of cellwise
bJ are dominated by the fact that the “full” transport

operator is locally inverted on each computational cell.
This explains why, as evident in Fig. 2, the spectral ra-
dius tends to 0 in the optically-thick-cell regime. Hence,
for sufficiently optically thick problems, the cellwise bJ
algorithm is rapidly convergent even for diffusive prob-
lems that are scattering dominated with c close to 1; see
Fig. 3.

The predictions of the Fourier analysis for cellwise
bJ have been compared with the numerical results ob-
tained from the implementation of the bJ sweep in a 2-D
transport code. The results for r obtained for a level-
symmetric S4 quadrature with equal weights, a unit macro-
scopic total cross section, and scattering ratios of 0.5 and
0.99 are compared with the Fourier analysis in Tables I
and II, respectively. To reproduce the conditions of the
Fourier analysis, the 2-D transport code was used to solve
a sequence of Cartesian meshes, with vacuum boundary
conditions, characterized by increasing mesh size. Every
Cartesian element in the mesh is subdivided into four
triangular cells. Hence, the 1 � 1 mesh corresponds to
the four-cell system depicted in Fig. 1. The results shown
in Tables I and II can be understood in view of the fact
that, while the theoretical spectrum from the Fourier analy-
sis is obtained for an infinite medium, the actual spec-
trum incorporates the effect of particle leakage at the

Fig. 1. Four-cell system for the Fourier analysis of cellwise bJ and bGS.

212 ROSA et al.
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boundaries of the finite 2-D domain. As the mesh size is
increased, for a given element width, the effect of leak-
age is less and less important. Therefore, the values ob-
tained from the code are coincident with one another and
with the theoretically predicted r in the optically thick
regime. As the element width is decreased, the effect of
leakage becomes dominant and the estimates of the spec-

tral radius obtained with the code depart from the infinite-
medium value. As expected, though, the actual spectral
radius approaches the theoretical value as the number of
cells in the mesh is increased, making the overall do-
main thicker. The theoretical values would ideally be
obtained in the limit as the number of cells in the mesh
goes to infinity.

Fig. 2. Fourier analysis of one-group cellwise bJ: r.

Fig. 3. Spectral radius of one-group cellwise bJ for various scattering ratios.

SN TRANSPORT ON HYBRID PARALLEL ARCHITECTURES 213
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III. FOURIER ANALYSIS OF ONE-GROUP
CELLWISE bGS

The results discussed in Sec. II indicate that conver-
gence of cellwise bJ can degrade in problems containing
optically thin cells. An alternative approach, resulting in
a faster transition to the optically-thick-cell regime, is
resorting to cellwise bGS in which the most up-to-date
information available on the incoming angular fluxes is
used at a cell’s boundary. In the following we discuss the
spectral properties of cellwise bGS, considering initially
the most favorable case of a single processor, Np � 1.

For cellwise bJ the angular fluxes incoming on the
boundaries of a mesh cell are always lagged from the
previous iteration. Therefore, whether or not a cell bound-
ary is coincident with the interface between two differ-
ent processors, in the parallel implementation of the bJ
sweep, has no consequence on the spectral properties of
cellwise bJ. Hence, no mention on the number of proces-
sors was made either in devising the Fourier analysis for
cellwise bJ or in discussing the results contained in
Tables I and II. For the same reason, the order in which
the four triangular cells over the Cartesian element de-

picted in Fig. 1 are swept in the bJ sweep has no impact
on the spectral properties of cellwise bJ. Since for cell-
wise bGS the most up-to-date information available on
the incoming angular fluxes is used at a mesh cell’s bound-
aries, in the interior of a parallel subdomain, the above
circumstances no longer hold true. Under the assump-
tion of a single processor, a Fourier analysis for cellwise
bGS can be devised by referring to the system of four
triangular cells over a Cartesian element sketched in
Fig. 1. We also assume the sweeping sequence 4-1-2-3
for the triangular mesh cells. This implies, for example,
that the information on the angular fluxes incoming on
cell 1 from cell 4 is already available at ~� � 1! while
that from cell 2 is only available at ~�!. To further fix
ideas, while Eq. ~5! for the Fourier ansatz previously
formulated for cellwise bJ remains the same for cellwise
bGS, Eq. ~6! needs to be replaced with

c2, m
i ~1! � c4, m

k~��1!exp~�jlx sdx! , i � 1, 2; k � 2,1 .

~8!

Therefore, the cellwise bGS algorithm is based on split-
ting the L operator into two contributions OLc and OLb ,

TABLE I

Theoretical and Computed r of One-Group Cellwise bJ for c � 0.5

dx � dy 10�3 10�2 10�1 100 10�1 10�2 10�3 10�4

1 � 1 0.005 0.017 0.057 0.181 0.194 0.039 0.004 4 � 10�4

2 � 2 0.162 0.251 0.390 0.523 0.341 0.073 0.008 8 � 10�4

4 � 4 0.475 0.571 0.679 0.701 0.381 0.083 0.009 9 � 10�4

8 � 8 0.724 0.785 0.842 0.781 0.396 0.088 0.010 0.001
16 � 16 0.864 0.897 0.923 0.812 0.400 0.089 0.010 0.001
32 � 32 0.936 0.952 0.958 0.822 0.401 0.089 0.010 0.001
64 � 64 0.970 0.978 0.973 0.825 0.402 0.089 0.010 0.001

128 � 128 0.986 0.990 0.978 0.826 0.402 0.089 0.010 0.001
Fourier 0.999 0.998 0.981 0.827 0.402 0.089 0.010 0.001

TABLE II

Theoretical and Computed r of One-Group Cellwise bJ for c � 0.99

dx � dy 10�3 10�2 10�1 100 10�1 10�2 10�3 10�4

1 � 1 0.007 0.024 0.085 0.327 0.759 0.718 0.237 0.032
2 � 2 0.184 0.288 0.462 0.725 0.910 0.789 0.308 0.043
4 � 4 0.502 0.607 0.740 0.897 0.947 0.805 0.323 0.046
8 � 8 0.742 0.808 0.889 0.965 0.957 0.813 0.328 0.047

16 � 16 0.875 0.911 0.957 0.987 0.960 0.816 0.330 0.047
32 � 32 0.941 0.961 0.985 0.994 0.960 0.816 0.330 0.047
64 � 64 0.973 0.984 0.995 0.995 0.960 0.816 0.330 0.047

128 � 128 0.988 0.994 0.998 0.996 0.960 0.816 0.330 0.047
Fourier 1.000 1.000 0.999 0.996 0.961 0.817 0.330 0.047
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which are different from Lc and Lb , respectively, for cell-
wise bJ; see Eqs. ~2! and ~3!. Since part of the contribu-
tions originally lagged from the previous iteration for
cellwise bJ via Lb are attributed to OLc , it is expected that
the iteration operator TbGS for cellwise bGS,

TbGS � �~ OLc � SD!�1 OLb , ~9!

should display improved spectral properties with respect
to TbJ . The latter expectation is verified by the compari-
son of the spectral radii of cellwise bJ and bGS pre-
sented in Fig. 4 for different values of the scattering
ratio. For all the values of c attempted, the curve for
cellwise bGS lies below the corresponding curve for cell-
wise bJ, except for sufficiently optically thin problems,
where both curves approach a value of 1. In particular,
cellwise bGS enters the optically-thick-cell regime, char-
acterized by a value of r vanishing to 0, at a faster rate
than cellwise bJ.

We implemented the “bGS sweep” in the 2-D trans-
port code and used the code to verify the predictions
from the Fourier analysis for cellwise bGS. To reproduce
the conditions of the Fourier analysis, the code ran on a
single processor to solve the sequence of Cartesian
meshes, with vacuum boundary conditions, first intro-
duced in Sec. II. The values for r predicted by the Fou-
rier analysis for the level-symmetric S4 quadrature, a unit
macroscopic total cross section, and scattering ratios of
0.5 and 0.99 are verified by the estimates of r obtained
from the code in Tables III and IV, respectively.

The dependence of the spectral properties of cell-
wise bGS on Np is because the information on the angu-

lar fluxes incoming on an interface between two adja-
cent processors, available in the present iteration, was
communicated at the end of the previous iteration. As a
simple illustration of the impact of an interface on the
Fourier analysis for cellwise bGS, imagine that face ~1!
of cell 2, in Fig. 1, lies at the interface between two
different processors. Under this assumption, for exam-
ple, Eq. ~8! is no longer valid and must be replaced with
Eq. ~6!. Part of the cell’s interior contribution exerted
via OLc is therefore reattributed back to OLb . This leads in
turn to a new splitting of the L operator, L � OLc

' � OLb
' , and

to a different iteration operator, TbGS1Int , whose spectral
properties are expected to be intermediate between those
of TbGS and TbJ , respectively. This reasoning helps un-
derstanding the results presented in Fig. 5 for c � 0.5.
The bGS and bJ curves are the same as in Fig. 4. The
curve for two interfaces was obtained for the case in
which both face ~1! of cell 2 and face ~1! of cell 3 co-
incide with an interface between different processors.

Further research is needed in order to possibly tie
the parameter Np into the Fourier analysis for cellwise
bGS. It is expected, though, that the curves obtained
from this more refined analysis for a given c would have
to lie somewhere in between the bGS curve and the bJ
curve; see Fig. 5. The former curve is the lower envelope
obtained for the most favorable case of Np � 1. The
latter is the upper envelope and is equivalent to cellwise
bGS for the worst case of Np � Nc, where Nc is the
number of cells in the mesh.

It is noted that the fact that the spectral properties
of the cellwise bGS algorithm are dependent on the
particulars of the parallel decomposition stems from the

Fig. 4. Spectral radii of one-group cellwise bJ and bGS for various scattering ratios.
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TABLE III

Theoretical and Computed r of One-Group Cellwise bGS for c � 0.5

dx � dy 10�3 10�2 10�1 100 10�1 10�2 10�3 10�4

1 � 1 5 � 10�4 0.003 0.013 0.062 0.065 0.007 3 � 10�4 2 � 10�5

2 � 2 0.037 0.078 0.172 0.295 0.131 0.010 4 � 10�4 2 � 10�5

4 � 4 0.231 0.333 0.469 0.503 0.168 0.013 5 � 10�4 2 � 10�5

8 � 8 0.524 0.618 0.712 0.618 0.182 0.014 5 � 10�4 2 � 10�5

16 � 16 0.747 0.806 0.852 0.665 0.186 0.015 5 � 10�4 2 � 10�5

32 � 32 0.875 0.907 0.919 0.681 0.187 0.015 5 � 10�4 2 � 10�5

64 � 64 0.941 0.957 0.947 0.686 0.188 0.015 5 � 10�4 2 � 10�5

128 � 128 0.973 0.980 0.957 0.688 0.188 0.015 5 � 10�4 2 � 10�5

Fourier 0.999 0.996 0.962 0.688 0.188 0.015 5 � 10�4 2 � 10�5

TABLE IV

Theoretical and Computed r of One-Group Cellwise bGS for c � 0.99

dx � dy 10�3 10�2 10�1 100 10�1 10�2 10�3 10�4

1 � 1 8 � 10�4 0.004 0.022 0.146 0.587 0.528 0.080 0.004
2 � 2 0.046 0.100 0.231 0.535 0.830 0.626 0.108 0.005
4 � 4 0.258 0.375 0.555 0.807 0.896 0.650 0.119 0.005
8 � 8 0.552 0.655 0.791 0.931 0.916 0.664 0.123 0.005

16 � 16 0.766 0.831 0.916 0.974 0.921 0.668 0.124 0.005
32 � 32 0.886 0.924 0.970 0.987 0.922 0.669 0.125 0.005
64 � 64 0.947 0.970 0.990 0.991 0.923 0.670 0.125 0.005

128 � 128 0.976 0.988 0.996 0.992 0.923 0.670 0.125 0.005
Fourier 1.000 0.999 0.999 0.992 0.923 0.670 0.125 0.005

Fig. 5. Effect of processor interface on the spectral properties of cellwise bGS.
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implementation of bGS used in this work, in which
the information on the angular fluxes incoming on an
interface between two adjacent processors, available in
the present iteration, was communicated at the end of
the previous iteration. The latter approach was followed
in order to avoid the complications and potential ineffi-
ciencies associated with conducting FPS on unstruc-
tured meshes. It may be possible to combine parallel
sweep technologies with the iterative splitting associ-
ated with a Gauss-Seidel iterative scheme, therefore using
the most up-to-date information at an interface between
two adjacent processors. Nonetheless, we will not ex-
plore here the endless possibilities associated with such
hybrid approaches, which lie between the two extremes
of FPS on one hand and cellwise bJ on the other. In this
respect, our bGS iteration is only one of many such
possible implementations.

IV. MULTIGROUP CELLWISE
bGS ALGORITHM

We consider the steady-state, multigroup transport
problem using two energy groups to illustrate the con-
cepts exposed during this discussion. Later, results with
more groups will be presented. The two-group transport
problem is, in operator notation,

� ZV{¹c1 � s1 c1 � sS11 f1 � sS12 f2 � q1

ZV{¹c2 � s2 c2 � sS21 f1 � sS22 f2 � q2 .
~10!

The terms on the left side in Eq. ~10! are the streaming-
plus-total-interaction operators for each group while the
scalar fluxes on the right side of Eq. ~10! are the integral
of the group angular fluxes over all angles, performed
via the discrete-to-moment operator D. The sSgg ' cross
sections represent isotropic scattering from group g ' into
group g, where g, g ' � 1, 2.

The coupled system in Eq. ~10! is often solved with
SI, which is written for iteration ~�! as

�c1
~��1!

c2
~��1!� � �L1 0

0 L2
��1��sS11 sS12

sS21 sS22
��D 0

0 D�
� �c1

~�!

c2
~�!�� �q1

q2
�� . ~11!

On a parallel computer, it is the block inverses on the
right side of Eq. ~11! that are computed with FPS. The
FPS forms the bulk of the computational effort in an SN

transport calculation. Efficiency of the FPS degrades as
the number of processors increases. Note that this ver-
sion of SI does not use nested, within-group iterations
typically used in transport codes.

The two-group bGS algorithm employs the same spa-
tial splitting of the group streaming-plus-total-interaction

operators, as described in Sec. III, for each of the two
groups. In this case, at iteration ~�!, the cellwise bGS
algorithm is

�c1
~��1!

c2
~��1!� � �� OLc1 0

0 OLc2
�� �sS11 sS12

sS21 sS22
��D 0

0 D��
�1

� ��� OLb1 0

0 OLb2
��c1

~�!

c2
~�!�� �q1

q2
�� . ~12!

Again, the bGS variation on bJ uses a mix of updated
fluxes cg

~��1! and lagged fluxes cg
~�! operated on by the

OLbg operators, which depends on the numbering of the
mesh cells. The combination of operations on the right
side of Eq. ~12! is the bGS sweep.

The convergence rate of SI is the spectral radius of
the matrix operator:

TSI2g � �L1 0

0 L2
��1�sS11 sS12

sS21 sS22
��D 0

0 D
� . ~13!

Similarly, the convergence rate of cellwise bGS is given
by the spectral radius of the matrix operator:

TbGS2g � ��� OLc1 0

0 OLc2
�� �sS11 sS12

sS21 sS22
��D 0

0 D
���1

� � OLb1 0

0 OLb2
� . ~14!

Fourier analysis indicates that the flat error mode is the
dominant eigenvalue for SI. Because that error mode is
constant in space, particle streaming can be ignored and
we can compute the spectral radius of the iteration ma-
trix on the right side of

�f1
~��1!

f2
~��1!� � �s1 0

0 s2
��1�sS11 sS12

sS21 sS22
��f1

~�!

f2
~�!� ~15!

to investigate the asymptotic convergence rate of SI. That
is, if we let

TSI2g � ST
�1 SS � �s1 0

0 s2
��1�sS11 sS12

sS21 sS22
� , ~16!

the two-group spectral radius is

rSI2g � max6Eig~TSI2g !6 . ~17!

The scattering cross sections in Eq. ~16! must satisfy the
inequalities

�sS11 � sS21 � s1

sS12 � sS22 � s2

. ~18!

If equality holds in Eq. ~18!, then the spectral radius of
the TSI2g matrix is exactly equal to 1, regardless of the
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numerical values of the cross sections. This result ap-
plies for any number of energy groups. For example, we
devise a problem for which r for two-group SI is 0.9999
by enforcing the constraint

�sS11 � sS21 � 0.9999s1

sS12 � sS22 � 0.9999s2

] rSI2g � 0.9999 . ~19!

In this case, SI would converge slowly. On the other
hand, the convergence of GMRES depends on the shape
of the eigenvalue spectrum and not just the size of the
dominant eigenvalue.16 Random scattering matrices can
be used to generate an iteration matrix whose spectrum
is widely distributed in the complex plane, with eigen-
values that are small relative to the size of the spectrum,
a situation in which GMRES would converge slowly.
Therefore, we will devise problems for which both SI
and GMRES converge slowly by generating a dense,
random scattering matrix and compute the total cross
sections from the constraints that fix r � 1.

We begin constructing such a multigroup problem
with G energy groups by creating a random G � G ma-
trix R, with entries rgg ' in the range @0,1# , and renormal-
ize the elements on each row of matrix R so that their
sum equals 1. We then use the renormalized matrix ele-
ments to construct the scattering cross section matrix

sSgg ' � rgg '� (
g '�1

G

rgg '��1

, g, g ' � 1, . . . ,G . ~20!

Note that renormalization is not strictly necessary to ob-
tain a desired r for multigroup SI. We do so only to
ensure that the total cross sections obtained in each group
are not far from unity. If we take the total cross sections
to be proportional to the sums of the entries on the col-
umns of the scattering matrix

sg ' � ~1 � ag ' ! (
g�1

G

sSgg ' , g ' � 1, . . . ,G , ~21!

then coefficients ag ' are obtained as follows:

ag ' � l � ~u � l !rg ' , g ' � 1, . . . ,G , ~22!

where rg ' is a random value on @0,1# , such that the a
coefficients have random values on @l, u# . For example,
by selecting l � 10�5 and u � 10�4 , we obtain r for
multigroup SI comprised between 0.9999 and 0.99999.
If l � u � 10�4 , then r is exactly equal to 0.9999. Phys-
ically, this means that each a coefficient introduces a
small neutron absorption in its corresponding energy
group.

To verify this procedure for multigroup SI, we com-
pare the value of r predicted via Eq. ~17! with Fourier
analysis for two-group SI, using cross sections obtained
by selecting l � 10�5 and u � 10�4 . This leads to
scattering cross sections sS11 � 6.1789 � 10�1 , sS12 �
3.8211 � 10�1 , sS21 � 9.2747 � 10�1, and sS22 �
7.2534 � 10�2 and total cross sections s1 � 1.5454 and
s2 � 4.5468 � 10�1 . Using these values in Eq. ~17!
leads to rSI2g � 0.99995 for this model problem. Fou-
rier analysis on a four-triangle, 1 � 1 square, as de-
picted in Fig. 1, gives the same result. We have verified,
as well, that the maximum eigenvalue is found at the
Fourier wave numbers lx � ly � 0; namely, it is the
flat error mode that is most slowly attenuated by multi-
group SI.

Fourier analysis for two-group SI was also com-
pared with numerical results obtained from a multigroup
FPS implementation in 2-D Cartesian coordinates. Mea-
sured estimates for r obtained for the model problem on
an I � J domain, where I ~J ! is the number of mesh cells
along x ~ y!, are compared with the Fourier analysis in
Table V for a sequence of meshes of squares with sides
of length dx � dy. Every Cartesian element in the mesh
is subdivided into four triangular cells. The difference in
the results presented in Table V is explained because the
Fourier analysis is over an infinite medium whereas
the actual spectrum incorporates the effect of particle
leakage at the boundaries of the problem, for which vac-
uum boundary conditions were specified. As the mesh

TABLE V

Theoretical and Computed r of Two-Group SI

dx � dy 10�1 100 10�1 10�2 10�3 10�4 10�5 10�6

1 � 1 0.06336 0.41485 0.91905 0.99831 0.99993 0.99995 0.99995 0.99995
2 � 2 0.11910 0.60015 0.97183 0.99954 0.99994 0.99995 0.99995 0.99995
4 � 4 0.21469 0.77284 0.99186 0.99986 0.99995 0.99995 0.99995 0.99995
8 � 8 0.35891 0.89521 0.99778 0.99992 0.99995 0.99995 0.99995 0.99995

16 � 16 0.54046 0.96118 0.99939 0.99994 0.99995 0.99995 0.99995 0.99995
32 � 32 0.72195 0.98798 0.99981 0.99995 0.99995 0.99995 0.99995 0.99995
64 � 64 0.86236 0.99664 0.99991 0.99995 0.99995 0.99995 0.99995 0.99995
Fourier 0.99995 0.99995 0.99995 0.99995 0.99995 0.99995 0.99995 0.99995
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size is increased, for a given element width, the effect of
leakage becomes less significant. Overall, the spectral
properties of multigroup SI appear to be similar to the
well-known spectral properties of one-group SI ~Ref. 7!.

Table VI compares Fourier analysis of two-group
bGS to a numerical implementation for the same prob-
lem as in Table V. Again, the results for multigroup bGS
are similar to those for one group presented in Sec. III;
that is, multigroup bGS is rapidly convergent in prob-
lems with optically thick cells, even for the highly scat-
tering model problem, while convergence degrades for
problems containing optically thin cells. This is the re-
verse of SI, which converges more quickly when cells
are optically thin and more slowly when cells are thick.

V. IMPLEMENTATION OF MULTIGROUP bGS
ON ROADRUNNER

The LANL Roadrunner machine has a massively par-
allel, hybrid computing architecture separated into sev-
eral layers of communication pathways and processor

types. While this idea is not completely new, Roadrun-
ner was the first supercomputer to break the “petaflop
barrier.”1 The smallest logical building block is com-
monly referred to as a TriBlade, which consists of an
IBM LS21 blade connected to two QS22 blades using a
special expansion card for the quad PCIe 8x intercon-
nect; see Fig. 6. Each of the cores in the LS21 two-dual-
core Opterons is connected to a Cell0B.E. CPU using a
PCIe 8x bus. Each of the two QS22 blades has two IBM
PowerXCell 8i Cell0B.E. CPUs. Each PowerXCell 8i
CPU consists of a dual-threaded 64-bit PowerPC core
@power processing element ~PPE!# connected to eight
SPEs. The SPEs are designed for running compute-
intensive applications but depend on the PPE to run the
operating system. In turn, the PPE depends on the SPEs
to provide the bulk of the compute power.

Each TriBlade can be configured either as four mes-
sage passing interface ~MPI! nodes consisting of one
Opteron core connected to a PPE and eight SPEs or as
two MPI nodes consisting of two Opteron cores con-
nected to a single PPE and sixteen SPEs. Overall, each
TriBlade has .400 Gflops double precision, 8 Gbytes
Opteron memory, and 8 Gbytes Cell0B.E. memory.

TABLE VI

Theoretical and Computed r of Two-Group Cellwise bGS

dx � dy 10�1 100 10�1 10�2 10�3 10�4 10�5 10�6

1 � 1 0.02209 0.13220 0.52027 0.90705 0.96422 0.78241 0.22617 0.01563
2 � 2 0.22834 0.49514 0.83448 0.97496 0.97528 0.84453 0.30419 0.01916
4 � 4 0.54655 0.77117 0.94952 0.99128 0.97780 0.85753 0.32751 0.02111
8 � 8 0.78134 0.91477 0.98602 0.99553 0.97889 0.86289 0.33598 0.02178

16 � 16 0.90729 0.97268 0.99614 0.99660 0.97915 0.86437 0.33831 0.02197
32 � 32 0.96410 0.99211 0.99879 0.99687 0.97918 0.86477 0.33891 0.02203
64 � 64 0.98728 0.99785 0.99947 0.99694 0.97927 0.86487 0.33911 0.02204
Fourier 0.99999 0.99997 0.99970 0.99696 0.97932 0.86487 0.33911 0.02204

Fig. 6. Compute node of Roadrunner hybrid architecture.

SN TRANSPORT ON HYBRID PARALLEL ARCHITECTURES 219

NUCLEAR SCIENCE AND ENGINEERING VOL. 174 JULY 2013



www.manaraa.com

The TriBlades can be clustered together using first-
level infiniband ~IB! switches into connected units ~CUs!,
each of which has up to 180 TriBlades ~or up to 720 MPI
ranks!. Redundant second-level IB switches are used to
connect the CUs together. Several machine configura-
tions are available at LANL with double-precision com-
putation rates of up to 1 petaflop.

V.A. Single-Threaded Hybrid
Implementation of bGS

The bGS sweep can be executed on the cores on the
Opteron blades, without taking advantage of the Cell0
B.E. processors. Numerical experiments shown later il-
lustrate that the cellwise bGS algorithm is not viable in
this case. This is because the times for the LU factoriza-
tion and solution on which the algorithm is based in-
crease cubically with the size of the linear system. For
multigroup SN transport, this means the algorithm can
only be applied for a very small number of energy groups
and SN quadratures. The Cell0B.E. implementation of
the LU decomposition in LAPACK ~Ref. 17!, which ex-
ploits up to 16 SPEs, scales much better with the size of
the linear system. A hybrid implementation of the cell-
wise bGS algorithm restores the viability of the method
because of the lower computational cost of the LU fac-
torizations for typical numbers of energy groups and SN

quadrature orders.
The basic bGS sweep, conducted on the spatial mesh

subdomain assigned to one MPI rank, is written in pseudo-
code in Fig. 7. For a given mesh cell, the size N is com-
puted, which is the product of the number of SN angles,
the spatial degrees of freedom on the mesh cell ~three for
DFEM on triangles!, and the number of coupled energy
groups. The matrix A and right side b are constructed
and a LU factorization and solution of matrix A com-
puted. Finally, we store the cell angular fluxes in the
global solution vector of angular fluxes before moving
to the next cell. The rest of the SN transport computa-
tions take place outside the bGS sweep code.

The most straightforward way to implement the above
procedure on the Roadrunner architecture, and the one
that requires the least modification of the original code,

is to move the LU factorization, circled in Fig. 7, to the
PPE as shown in Fig. 8. In this case, the Opteron still
computes N and builds A and b as before. The Opteron
signals the PPE that a linear system is ready to be solved
at that point by writing N into the PPE mailbox. The
mailbox is a communication mechanism whereby an un-
signed integer can rapidly be transferred from the Opteron
to the PPE. Since A and b can be large, the most efficient
way for the Opteron to make them available to the PPE
is to “share” memory for A and b with the PPE. This
gives the PPE unidirectional access to the data so that
the PPE then gets the data for A and b and proceeds with
the LU factorization and solution via the Cell0B.E. im-
plementation of the LAPACK routines.

It is noted that the calls to the LAPACK routines on
the PPE take care both of the data movement between
the PPE and the SPEs and of the partition of work on the
data between the various SPE threads. Hence, by hiding
the details of the SPE implementation, the LAPACK rou-
tines offer the hybrid programmer a certain level of ab-
straction in harnessing the computational power of the
accelerators.

The PPE puts the solution into the Opteron memory
space and sends a mailbox signal to the Opteron indicat-
ing that the solution for this computational cell is avail-
able for retrieval, at which point it is stored in the global
solution vector of angular fluxes.

V.B. Dual-Threaded Hybrid
Implementation of bGS

The single-threaded hybrid implementation dis-
cussed in Sec. V.A is straightforward, but it has a draw-
back; namely, the Opteron is idle while the PPE is
working, and vice versa. Computational efficiency of
the bGS sweep is improved by overlapping communica-
tion and computation using multithreading techniques,18

as shown in Fig. 9. Communication threads ~Comm
Fig. 7. A bGS computational kernel: traditional Opteron-

only implementation.

Fig. 8. A bGS computational kernel: single-threaded hy-
brid implementation.
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threads! and computation threads ~Comp threads! take
place simultaneously on both the Opteron and the PPE,
for each MPI rank, using two buffers denoted with the
subscripts 1 and 2 in Fig. 9. A Comp thread on the Opteron
starts by computing N1 and building A1 and b1 . The
Opteron Comm thread then writes N1 in the PPE mail-
box, but the Comp thread is not idle; it starts computing
N2 and building the next matrix A2 . Concurrently, the
PPE Comm thread receives N1 and is ready to get A1 .
As soon as A1 is received, the PPE Comp thread per-
forms a LU factorization. Once b1 is available, it com-
putes the solution x1 . Meanwhile, the PPE Comm thread
receives N2 and then A2 , and so on. Since b2 depends on
x1 for bGS, the Opteron builds b2 after storing x1 and
reuses N2 to flag the PPE that b2 is ready. Overlapping
of the threads takes place by swapping the buffers, illus-
trated by the loops in Fig. 9. Race conditions between
threads are avoided using semaphores indicated by the
“ready” labeled horizontal lines spanning the Comp
threads and Comm threads. Appropriate conditions ~not
shown! ensure that the loops are exited once a bGS sweep
is completed.

V.C. Speedup of the Hybrid
Implementation of bGS

To validate the speedup provided by the single- and
dual-threaded implementations of cellwise bGS, we used
an 8 � 8 grid of squares, each of which is 10�4 cm on a
side. The grid was further subdivided into four triangu-
lar cells for every square—a total of 256 mesh cells.
Scattering ratio c � 0.99, s � 1 cm�1, a uniform fixed
source of 1 m�3 s�1, and vacuum boundary conditions
were specified. Square Chebyshev-Legendre quadra-

tures vary from order n � 2 to 40, such that the linear
systems sizes vary as N � 3n2 .

Figure 10 shows the execution times for the
GMRES~20! solution, to a relative convergence toler-
ance of 10�5 using different numbers of processors ~Np �
4, 8, and 16! for the same problem. The Opteron-only
implementation of bGS is labeled GSOP, while GSST
and GSDT refer to the single- and dual-threaded hybrid
implementations of bGS, respectively, using 16 SPEs for
every process.

The dual-threaded, double-buffered version of bGS
is almost twice as fast as the single-threaded version
because the Comm thread and Comp thread are com-
pletely overlapped. When N is less than ;300, the hy-
brid implementations are slower than the Opteron-only
implementation, because of the overhead associated with
moving data between the Opteron and the PPE. When
the linear system size increases, the LU decomposition
time on the Opteron-only implementation begins to dom-
inate, while the hybrid solution times increase at a much
slower rate, such that the hybrid implementations are up
to 100 times faster.

VI. STRONG AND WEAK SCALING RESULTS

We now compare our bGS sweep implementation to
FPS for a more complex problem that comprises two
square regions, an outer region 5 m wide surrounding an
inner region 2.5 m wide. The outer region contains ma-
terial 1 ~Mat 1! and the inner region material 2 ~Mat 2!;
see Fig. 11. Table VII details the configurations that we
used to construct four problems of increasing material

Fig. 9. A bGS computational kernel: dual-threaded hybrid implementation.
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heterogeneity. Because cellwise bGS performs well in
optically thick problems, Mat 1 is chosen to be optically
thick and characterized by a scattering ratio of 0.9999.
The properties of Mat 2 are then varied in such a way
that the convergence rate of GMRES for the FPS imple-
mentation is adversely affected. In Table VII and in
Figs. 12 and 13, the label Hom stands for a homo-
geneous problem while the label Het identifies the het-
erogeneous problems. The first digit in the homogeneous
problem is used to denote the exponent in the total cross
section, while the first and second digits of the hetero-
geneous problems indicate the exponents in the cross
sections for the heterogeneous problems in Mat 1 and
Mat 2, respectively.

Fig. 10. Speedup of bGS on the hybrid architecture.

Fig. 11. Two-region configuration.

TABLE VII

One-Group Problems of Increasing Material Heterogeneity for the Two-Region Configuration

Problem
s1

~m�1 !
sS1

~m�1 !
s2

~m�1 !
sS2

~m�1 !

Hom66 1.0001 � 10�6 1. � 10�6 1.0001 � 10�6 1. � 10�6

Het66 1.0001 � 10�6 1. � 10�6 1. � 10�6 0.9999 � 10�6

Het65 1.0001 � 10�6 1. � 10�6 1. � 10�5 0.999 � 10�5

Het64 1.0001 � 10�6 1. � 10�6 1. � 10�4 0.99 � 10�4
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As long as the inner region is not too optically thin,
we expect that the convergence of bGS will be fairly
insensitive to material discontinuities. The spatially dis-
cretized problem is solved on an unstructured triangular
mesh comprising 10 454 mesh cells, and we vary the
number of energy groups used in each of the four prob-
lems: 1, 2, 10, 20, and 30. We use an S4 level-symmetric
angular quadrature, which has 12 discrete ordinates. Thus,
the dimension of linear systems increases with increas-
ing number of groups. For the multigroup extensions of
the four one-group problems described in Table VII, we
construct the scattering and total cross sections for a
material as described in Sec. IV, namely, in such a way
as to ensure that the eigenvalue of maximum magnitude
for the multigroup SI iteration is equal to the scattering
ratio selected for the material in the one-group cases. We
assume vacuum boundary conditions and a fixed uni-
form source of strength 1 cm�3 s�1 throughout both ma-
terial regions. Solutions are computed using GMRES~50!
to a relative convergence tolerance of 10�5.

VI.A. Strong Scaling of bGS and FPS

Strong scaling is measured by increasing the num-
ber of processors employed in the parallel computation,
from 32 to 512 in powers of 2. The results of the strong
scaling are reported in Fig. 12, showing the solution times
and number of iterations versus the number of proces-
sors, plotted separately for each of the various numbers
of energy groups. Closed markers connected with solid
lines refer to the dual-threaded implementation of cell-
wise bGS ~GSDT!, and open markers with dashed lines
refer to the ~Opteron-only! implementation of FPS
~PSWP!.

For g � 1, solution times with the bGS implementa-
tion are fairly constant for the four types of problems,
while the FPS implementation solution times increase
with increasing material heterogeneity. For a given prob-
lem and number of groups, the number of iterations for
FPS is constant with respect to Np. The slight increase
in the number of iterations for bGS, as Np is increased,
is a consequence of the effect of processor interfaces
on the spectral properties of bGS because the terms in-
volving OLb on the parallel-decomposed mesh boundaries
are always lagged; see Sec. III. The bGS implementation
also displays better scaling properties than the FPS im-
plementation, for which the dependencies between pro-
cessors result in a sweep schedule that scales poorly as
Np becomes large.9,10 This becomes evident on more
than 256 processors.

Similar results are observed for the g � 2 and 10
calculations. For g � 20, the bGS implementation slows
down relative to the FPS implementation due to the in-
creasing size of the linear systems for a larger number of
groups. Even though the execution times are slower, the
scaling of the bGS implementation is better than the FPS
implementation because bGS requires fewer iterations

compared to FPS. Even for a homogeneous configura-
tion, convergence of the multigroup problems slows as a
consequence of the eigenvalue distribution arising out of
the randomly generated multigroup scattering operator;
this effect is more pronounced for the FPS implementa-
tion than for the bGS implementation.

Finally, the strong parallel efficiency of bGS on Road-
runner can achieve 73% at 512 processors, compared
with 32 processors, while efficiency is 34% for FPS. The
above results were computed for the Het64 problem
solved with 20 energy groups, using the solver time data
reported on the ordinate axis of Fig. 12d.

VI.B. Weak Scaling of bGS and FPS

We compared weak scaling by considering the strong
scaling unstructured triangular mesh, comprising 10 454
cells, that was used for the initial number of processors,
Np � 32. We generated a sequence of meshes such that
the average number of cells per processor was roughly
the same as for the initial mesh, that is, 326 mesh cells
per processor. In other words, as the number of proces-
sors is increased for the fixed-size problem domain, the
mesh is increasingly refined and the spatial discretiza-
tion becomes increasingly resolved.

Results in Fig. 13 show that the bGS implementa-
tion on the hybrid architecture displays better weak scal-
ing than the FPS implementation and can be competitive
with FPS, once the number of processors becomes large
enough. This is again due to scheduling dependencies
among parallel subdomains associated with the FPS im-
plementation and to the resilience of the GMRES solu-
tion using the bGS splitting in the presence of material
discontinuities. The increase in GMRES iterations for
bGS is due to the triangles becoming progressively op-
tically thinner as the meshes are refined and the fact that
bGS spectral properties degrade as the cells become
thinner.

Finally, it is noted that the weak parallel efficiency
of bGS on Roadrunner is 58% at 512 processors, com-
pared with 32 processors, while it is 10% for FPS. The
latter results were also computed for the Het64 problem
solved with 20 energy groups, using the solver time data
reported on the ordinate axis of Fig. 13d.

VII. CONCLUSIONS

We have performed a Fourier analysis for the one-
group, cellwise bJ and bGS iterative algorithms for SN

transport. The results of the Fourier analysis show that
convergence of both algorithms can degrade in problems
containing optically thin cells, for which the spectral ra-
dii of both cellwise bJ and bGS tend to a value of 1,
independent of the scattering ratio c. In the opposite limit
of optically thick cells both cellwise bJ and bGS are
rapidly convergent, with a spectral radius vanishing to 0.
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Fig. 12. Strong scaling of bGS compared to FPS.

224 ROSA et al.

NUCLEAR SCIENCE AND ENGINEERING VOL. 174 JULY 2013



www.manaraa.com

Fig. 13. Weak scaling of bGS compared to FPS.
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Interestingly, this feature also holds for scattering-
dominated problems while bGS displays superior spec-
tral properties by approaching the asymptotic, thick-cell
regime at convergence rates higher than bJ.

By virtue of its superior spectral properties, we have
implemented a multigroup, dual-threaded, double-
buffered version of the bGS sweep on the Roadrunner
hybrid computer architecture. When combined with the
Cell0B.E. implementation of a LU decomposition and
solution, we have shown that the bGS splitting is a
viable solution algorithm, when solved with GMRES
on the Opteron level of this architecture.

We observed that the bGS implementation outper-
formed the traditional FPS implementation of SI on large
numbers of processors by virtue of superior strong and
weak scaling. While bGS holds the potential of being an
efficient algorithm for massively parallel transport cal-
culations in the model problems we devised for our nu-
merical experiments, further refinements to the algorithm
involving energy-splitting strategies will be investigated
in order to solve problems for applications with realistic
data and large numbers of energy groups.

The speedup and scalings we observed, while im-
pressive, are not sufficient to make bGS competitive with
the FPS algorithms under all circumstances. Other hy-
brid architectures using even faster accelerators, such as
those based on GPGPUs or field-programmable gate ar-
rays hold the potential to further speed up a LU factori-
zation on which the bGS implementation is based. The
overlapped dual-threaded approach to the bGS sweep
could be applied to other hybrid architectures.
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